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EXISTENCE OF POSITIVE T -PERIODIC SOLUTIONS

OF RATIO-DEPENDENT PREDATOR-PREY SYSTEMS

Kimun Ryu

Abstract. We study the existence of positive T -periodic solutions
of ratio-dependent predator-prey systems with time periodic and
spatially dependent coefficients. The fixed point theorem by H.
Amann is used to obtain necessary and sufficient conditions for the
existence of positive T -periodic solutions.

1. Introduction

In this paper, we investigate the existence of positive T -periodic so-
lutions of the following predator-prey reaction-diffusion systems with
ratio-dependent functional response
(1.1)

ut − d1(x, t)∆u = u(a(x, t)− u− c1(x,t)v
u+m(x,t)v )

vt − d2(x, t)∆v = v(b(x, t)− e(x, t)v + c2(x,t)u
u+m(x,t)v ) in Ω× [0,∞),

B1u = 0
B2v = 0 on ∂Ω× [0,∞),

where Ω is a bounded domain in Rn with smooth boundary ∂Ω, di, a,
b, ci, e, m are functions of (x, t) ∈ Ω× [0,∞) and are T -periodic in the
value t for some T > 0, Biw = κi

∂w
∂ν + τiw for nonnegative constants κi,

τi with κ2
i +τ2

i 6= 0 and the outward unit normal ∂
∂ν to ∂Ω. Furthermore,

di, a, ci,m are positive functions and b is a nonzero function which may
change sign. Here, u and v represent the population densities of prey
and predator, respectively.

In (1.1), note that (u, v) = (0, 0) is a singular point. But since

lim(u,v)→(0,0) u(a(x, t) − u − c1(x,t)v
u+m(x,t)v ) = 0 and lim(u,v)→(0,0) v(b(x, t) −
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e(x, t)v + c2(x,t)u
u+m(x,t)v ) = 0, we can extend the domain of u(a(x, t) − u −

c1(x,t)v
u+m(x,t)v ) and v(b(x, t)−e(x, t)v+ c2(x,t)u

u+m(x,t)v ) to {(u, v) : u ≥ 0, v ≥ 0} by

defining uv
u+m(x,t)v = 0 at (u, v) = (0, 0) so that (0, 0) becomes a trivial

solution of (1.1).
The populations usually live in a temporally periodic environment

with spatial variations. In particular, in order to introduce seasonal
variations or day-night cycles in the ratio-dependent predator-prey in-
teraction, we assumed that the given coefficient functions in (1.1) are T -
periodic with respect to t. Optimal control systems for reaction-diffusion
models are actually used agriculture and environmental problems. Be-
cause the growth rates of life species change seasonally, it is necessary to
study such models whose coefficients are T -periodic. Traditionally, the
periodic reaction-diffusion systems have been intensively studied con-
cerning the existence of periodic positive solutions under various bound-
ary conditions. (See [1, 3, 4, 5, 6, 8, 9].) In those articles, the authors
applied the fixed point index theory to obtain the desired results and
in this application, the principal eigenvalue of the linearized periodic-
parabolic problem plays an important role. Especially, in [7], the authors
study the existence and asymptotic behavior of positive T -periodic so-
lutions of diffusive Hassell-Varley type predator-prey systems with time
periodic and spatially dependent coefficients. In our study, we study the
existence of T -periodic positive solutions to (1.1) using the fixed point
theorem by H. Amann([2]).

This paper is organized as follows. In Section 2, we present some
well-known results which are useful for the latter assertions. In Section
3, we investigate the necessary and sufficient conditions for the existence
of T -periodic positive solutions of (1.1).

2. Preliminaries

In this section, we present some well-known results which are useful
for the latter assertions.

For α ∈ (0, 1), define

F = {w ∈ Cα,
α
2 (Ω× R) : w is T -periodic in t},

FB = {w ∈ C2+α,1+α
2 (Ω×R) : Bw = 0 on ∂Ω× R, w is T -periodic in t},

where Bw = κ∂w∂ν + τw for nonnegative constants κ, τ with κ2 + τ2 6= 0.
We denote their usual positive cones for F , FB by PF , PFB , respectively.
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For d, q ∈ F with d > 0 in Ω×R, it is well-known that the T -periodic
parabolic eigenvalue problem

(2.1)

 ut − d(x, t)∆u+ q(x, t)u = λu in Ω× [0,∞),
Bu = 0 on ∂Ω× [0,∞),
u is T -periodic in t

has the principal eigenvalue and eigenfunction. Denote this principal
eigenvalue of (2.1) by λB1 (d, q) throughout this paper.

The following lemma gives the monotonicity and continuity properties
of the eigenvalue problem (2.1). For more details, one can refer [6].

Lemma 2.1. (i) If q1 ≤ q2 and q1 6≡ q2, then λB1 (d, q1) < λB1 (d, q2).

(ii) If qn → q ∈ C(Ω× [0, T ]), then λB1 (d, qn)→ λB1 (d, q) as n→∞.

Let Lu = ut − d∆u + Mu, where d ∈ F with d > 0 in Ω × R
and M > sup{|q(x, t)| : (x, t) ∈ Ω × [0, T ]}. Then one can see that
L : FB → F has a compact strongly positive operator L−1 : F → FB,
and so L−1 : FB → FB is a compact strongly positive operator since F
imbeds compactly into FB. For this operator L, we can find the following
lemma in [5].

Lemma 2.2. Let u ∈ FB with 0 6≡ u ≥ 0.
(i) If 0 6≡ Lu ≥ 0, then λB1 (d, q) > 0.

(ii) If 0 6≡ Lu ≤ 0, then λB1 (d, q) < 0.

(iii) If Lu ≡ 0, then λB1 (d, q) = 0.

Denote r(L) by the spectral radius of the linear operator L.

Lemma 2.3. If λB1 (d, q) < 0, then r(L−1(M − q)) > 1.

Proof. See Lemma 2.1 in [4].

Now consider the initial-boundary value problem

(2.2)

 ut − d(x, t)∆u = uf(x, t, u) in Ω× (0,∞),
Bu = 0 on ∂Ω× (0,∞),
u(x, 0) = u0(x) in Ω,

where f(x, t, u) : Ω × R+ × R+ → R is a continuous which satisfies the
following hypotheses

(H1) f is Cα,
α
2 (Ω× [0, T ]) in (x, t) uniformly for u in bounded subsets

of R,
(H2) f is C1-function in u,
(H3) f is T -periodic in t.



30 Kimun Ryu

Definition 2.4. The function u ∈ C1+α, 1+α
2 (Ω × [0, T ]) ∩ C2,1(Ω ×

(0, T ]) (0 < α ≤ 1) is a lower solution for the problem (2.2) if

(2.3)

 ut − d(x, t)∆u ≤ uf(x, t, u) in Ω× (0, T ],
Bu ≤ 0 on ∂Ω× (0, T ],
u(x, 0) ≤ u(x, T ) in Ω.

Similarly, an upper solution u is defined by reversing the inequality signs.
The lower and upper solutions u, u are called B−related if there exists
u# ∈ C2+α(Ω) with Bu# = 0 such that u ≤ u# ≤ u.

Lemma 2.5. Let u and u be B−related lower and upper solutions of
the problem (2.2). Then the relation u(x, t) ≤ u(x, t) holds in Ω× [0, T ].
Moreover, either u(x, t) < u(x, t) or u(x, t) ≡ u(x, t) in Ω× (0, T ].

Proof. Let w = u− u, then w satisfies the relation wt − d(x, t)∆w ≥ uf(x, t, u)− uf(x, t, u) in Ω× (0, T ],
Bw ≥ 0 on ∂Ω× (0, T ],
w(x, 0) ≥ 0 in Ω.

Using the mean-value theorem,

uf(x, t, u)− uf(x, t, u) =
∂

∂u
(uf(x, t, u))|u=ξ · (u− u),

where ξ = ξ(x, t) is an intermediate value between u and u. Hence we
have

wt − d(x, t)∆w + c(x, t)w ≥ 0 in Ω× (0, T ],

where c(x, t) = − ∂
∂u(uf(x, t, u))|u=ξ. The remaining part of the proof

follows from Lemma 2.1 in [9].

Theorem 2.6. If u and u are B−related lower and upper solutions
with u < u for (2.2), then there exists a T -periodic solution u with
u < u < u. Moreover, this T -periodic solution u is unique if ∂

∂ξ (f(x, t, ξ))

is a bounded below function in Ω× (0, T ]× R+.

Proof. The existence of such T -periodic solution follows from Theo-
rem 22.3 in [6]. We prove only the uniqueness of T -periodic solution.
Let u1 and u2 be T -periodic solutions of (2.2), then u1 and u2 are not
only lower solutions but also upper solutions of the problem (2.2). Using
Lemma 2.5, one can easily see that u1 ≡ u2.

Let E be a Banach space and let A be a strongly positive nonlinear
compact operator on E such that A(0) = 0.
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Lemma 2.7. Assume A′(0) exists with r(A′(0)) > 1 where A′(0) is a
Fréchet derivative of F at u = 0. If the solution to the equation u = θAu
has an a priori bound for all θ ∈ (0, 1], then A has a positive fixed point
u such that Au = u in the positive cone of E.

Proof. See the proof of Theorem 13.2 in [2].

3. Existence of periodic positive solutions

In this section, we investigate the necessary and sufficient conditions
for the existence of periodic positive solutions of (1.1).

To begin with, we consider the following first equation in (1.1)
(3.1) ut − d1(x, t)∆u = u(a(x, t)− u− c1(x,t)v

u+m(x,t)v ) in Ω× [0,∞),

B1u = 0 on ∂Ω× [0,∞),
u is T -periodic in t,

where v ∈ FB2 with v ≥ 0 in Ω× (0, T ].

Theorem 3.1. (i) If λB1
1 (d1,−a) ≥ 0, then (3.1) has no positive

T -periodic solution.
(ii) If λB1

1 (d1,−a+ c1
m ) < 0, then (3.1) has a unique positive T -periodic

solution.

Proof. (i) Suppose that u is a positive T -periodic solution of (3.1),

then λB1
1 (d1,−a + u + c1v

u+mv ) = 0 by Lemma 2.2 (ii), and so 0 =

λB1
1 (d1,−a+ u+ c1v

u+mv ) > λB1
1 (d1,−a) by Lemma 2.1 (i).

(ii) In view of Theorem 2.6, it suffices to show that (3.1) hasB−related
lower and upper solutions. One can easily check that u = a is an upper
solution for (3.1). To construct a positive lower solution, let φ(x, t) be

the principal eigenfunction corresponding to λB1
1 (d1,−a+ c1

m ), that is to
say,{
φt − d1∆φ− (a− c1

m(x,t))φ = λB1
1 (d1,−a+ c1

m(x,t))φ in Ω× (0, T ],

B1φ = 0 on ∂Ω× (0, T ].

Consider u = εφ with ε > 0. Then (εφ)t − d1(x, t)∆(εφ) − (a(x, t) −
c1(x,t)
m(x,t) )(εφ) = λB1

1 (d1,−a + c1
m )(εφ) < 0 in Ω × (0, T ], and so (εφ)t −

d1(x, t)∆(εφ) ≤ (εφ)(a(x, t)−εφ− c1(x,t)
m(x,t) ) ≤ (εφ)(a(x, t)−εφ− c1(x,t)v

εφ+m(x,t)v )

in Ω×(0, T ] for sufficiently small ε > 0 by the continuity. Hence u = εφ is
a positive lower solution for the equation (3.1). Finally, choosing a small
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constant ε > 0 such that εφ < a, we can see that u and u are B−related
lower and upper solutions for the equation (3.1). This completes the
proof.

Remark 3.2. In Theorem 3.1, note that there is a gap between the
necessary condition and the sufficient condition for the existence of pos-
itive T -periodic solutions. But if (3.1) has a positive T -periodic solution
in such gap range, then it must be unique by Theorem 2.6.

Lemma 3.3. If u is a nonnegative T -periodic solution of (3.1), then
‖u‖

C2+α,1+α2 (Ω×[0,T ])
<∞.

Proof. In the proof of Theorem 3.1 (ii), since u = a is an upper
solution of (3.1), ‖u‖∞ ≤ a, where ‖ · ‖∞ is an L∞−norm. By Lemma

20.2 in [6], ‖u‖C1+α, 1+α
2 (Ω× [T, 2T ]) ≤ M(T, ‖u‖C(Ω×[T,2T ])) for some

positive constant M , and so using the standard Schauder estimates, we
can have the desired result.

Throughout this paper, denote u∗a by the unique positive T -periodic
solution of the equation

(3.2)

{
ut − d1(x, t)∆u = u(a(x, t)− u) in Ω× (0, T ],
B1u = 0 on ∂Ω× (0, T ],

if λB1
1 (d1,−a) < 0. Similarly, v∗b is denoted by the unique positive T -

periodic solution of the equation

(3.3)

{
vt − d2(x, t)∆v = v(b(x, t)− e(x, t)v) in Ω× (0, T ],
B2v = 0 on ∂Ω× (0, T ],

if λB2
1 (d2,−b) < 0. The existence of such so called semi-trivial solutions

u∗a and v∗b follow from Theorem 3.1 (ii).

Lemma 3.4. Any nonnegative T -periodic solution (u, v) of (1.1) has
an a priori bound.

Proof. By Lemma 3.3, u has already an a priori bound. To show that
v has an a priori bound, consider

v = max
Ω×[0,T ]

{
bm− ae+

√
(bm− ae)2 + 4em(ab+ ac2)

2em
}.

Note that
bm−ae+

√
(bm−ae)2+4em(ab+ac2)

2em is a positive root of b − ev +
c2a
a+mv = 0 with respect to v, and so one can easily see that v is an upper
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solution of the equation{
vt − d2(x, t)∆v = v(b(x, t)− e(x, t)v + c2(x,t)u

u+m(x,t)v ) in Ω× (0, T ],

B2v = 0 on ∂Ω× (0, T ].

Thus it can be shown that ‖v‖
C2+α,1+α2 (Ω×[0,T ])

< ∞ by the similar

argument as in the proof of Lemma 3.3.

Throughout this paper, denote a priori bounds for the nonnega-
tive T -periodic solutions u and v by Q and R, respectively, that is,
‖u‖

C2+α,1+α2 (Ω×[0,T ])
≤ Q and ‖v‖

C2+α,1+α2 (Ω×[0,T ])
≤ R for any nonneg-

ative T -periodic solution (u, v) of (1.1).
Let ρ = R+ 1 and P ρ = cl{w ∈ PFB2

: ‖w‖
C2+α,1+α2 (Ω×[0,T ])

< ρ}. In

view of Remark 3.2, we can define the operator S : P ρ → PFB1
by

Sv =

{
uv if there is a unique positive T -periodic solution uv of (3.1),
0 otherwise.

Then one can show that S is continuous and compact map by the slight
modification of Theorem 2.6 in [5]. For v ∈ P ρ, consider the problem
(3.4) vt − d2(x, t)∆v = v(b(x, t)− e(x, t)v + c2(x,t)Sv

Sv+m(x,t)v ) in Ω× (0, T ],

B2v = 0 on ∂Ω× (0, T ],
v is T -periodic in t.

Define a positive compact operator A : P ρ → PFB2
by

A(v) = L−1(v(b(x, t)− e(x, t)v +
c2(x, t)Sv

Sv +m(x, t)v
) +Mv),

where Lv = vt − d2(x, t)∆v +Mv and M is a sufficiently large positive
constant such that M > maxΩ×[0,T ]{b(x, t) + c2(x, t)}. Note that v is

a T -periodic fixed point of A if and only if v is a T -periodic solution
of (3.4). Also A has a positive T -periodic fixed point v if and only if
(Sv, v) is a nonnegative T -periodic solution of (1.1).

Now we give some necessary and sufficient conditions for the existence
of positive T -periodic solutions to the system (1.1).

Theorem 3.5. (i) If λB1
1 (d1,−a) ≥ 0, then (1.1) has no positive T -

periodic solution, and in addition, if λB2
1 (d2,−b) ≥ 0, then (1.1) has no

nonnegative nonzero T -periodic solution.
(ii) Assume that λB2

1 (d2,−b) ≥ 0. Then λB1
1 (d1,−a) < 0 and λB2

1 (d2,
−b − c2) < 0 if and only if (1.1) has at least one positive T -periodic
solution.
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(iii) If λB2
1 (d2,−b) < 0 and λB1

1 (d1,−a + c1
m ) < 0, then (1.1) has at

least one positive T -periodic solution.

(iv) If λB2
1 (d2,−b) < 0 and (1.1) has a positive T -periodic solution,

then λB1
1 (d1,−a) < 0 and λB1

1 (d1,−a+
c1v∗b

u∗a+mv∗b
) < 0.

Proof. (i) Suppose that (u, v) is a positive T -periodic solution of (1.1),

then u satisfies the equation (3.1), and so λB1
1 (d1,−a + u − c1v

u+mv ) = 0

by Lemma 2.2 (iii). Thus λB1
1 (d1,−a) < λB1

1 (d1,−a + u − c1v
u+mv ) = 0

by Lemma 2.1 (i), which derives a contradiction. Next suppose (u, v)
is a nonnegative nonzero T -periodic solution of (1.1). Without loss of
generality, assume that u 6≡ 0 and v ≡ 0, then u satisfies{

ut − d1(x, t)∆u = u(a(x, t)− u) in Ω× [0,∞),
B1u = 0 on ∂Ω× [0,∞).

Using Lemma 2.2 (ii) and 2.1 (i), one can derive a contradiction, that

is, λB1
1 (d1,−a) < λB1

1 (d1,−a+ u) = 0.
(ii) Denote Aθ = θA for some θ ∈ (0, 1]. Assume that vθ is a T -

periodic fixed point of Aθ, then
(vθ)t − d2(x, t)∆vθ = θvθ(b(x, t)− e(x, t)vθ

+ c2(x,t)Svθ
Svθ+m(x,t)vθ

) +M(θ − 1)vθ in Ω× (0, T ],

B2vθ = 0 on ∂Ω× (0, T ].

Take v̂ = maxΩ×[0,T ]{
b(x,t)+c2(x,t)

e(x,t) }, then one can easily check that v̂ is

an upper solution of the following equation
vt − d2(x, t)∆v = θv(b(x, t)− e(x, t)v

+ c2(x,t)Svθ
Svθ+m(x,t)v ) +M(θ − 1)v in Ω× (0, T ],

B2v = 0 on ∂Ω× (0, T ].

Therefore vθ ≤ maxΩ×[0,T ]{
b(x,t)+c2(x,t)

e(x,t) }, and so ‖vθ‖C2+α,1+α2 (Ω×[0,T ])
<

∞. Note that vθ does not depend on θ ∈ (0, 1]. Moreover, since

λB2
1 (d2,−b − c2) < 0 from the assumption, r(A′(0)) = r(L−1(b + c2 +
M)) > 1 by Lemma 2.3. Consequently, we can conclude that A has
a positive T -periodic fixed point v by Lemma 2.7. Finally, we need
u = Sv > 0. If Sv ≡ 0, then v ≡ v∗b > 0 by the uniqueness of v∗b ,

which is impossible since λB2
1 (d2,−b) ≥ 0. Hence (Sv, v) is a positive

T -periodic solution of (1.1).
Next, let (u, v) be the positive T -periodic solution of (1.1), then we

have λB1
1 (d1,−a+u+ c1v

u+mv ) = λB2
1 (d2,−b+ev− c2u

u+mv ) = 0 by Lemma 2.2
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(iii), and so it can be shown easily λB1
1 (d1,−a) < 0, λB2

1 (d2,−b−c2) < 0
by Lemma 2.1 (i).

(iii) As in the proof of (ii), we can have a positive T -periodic fixed

point v of A since λB1
1 (d1,−a) < λB1

1 (d1,−a+ c1
m ) < 0 and λB2

1 (d2,−b−
c2) < λB2

1 (d2,−b) < 0. If u = Sv ≡ 0, then v ≡ v∗b > 0 by the uniqueness

of v∗b . But since λB1
1 (d1,−a+ c1

m ) < 0, Sv = Sv∗b > 0 by Theorem 3.1 (ii),
which is a contradiction. Thus (Sv, v) is a positive T -periodic solution
of (1.1).

(iv) Let (u, v) be the positive T -periodic solution of (1.1), then λB1
1 (d1,

−a+ u+ c1v
u+mv ) = 0, and so λB1

1 (d1,−a) < 0. Therefore the semi-trivial
solutions u∗a and v∗b exist. Using the comparison argument, one can eas-

ily show that u ≤ u∗a and v∗b ≤ v, and thus λB1
1 (d1,−a +

c1v∗b
u∗a+mv∗b

) <

λB1
1 (d1,−a+ u+ c1v

u+mv ) = 0 by Lemma 2.1 (i).
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